
J .  Fluid ,Wech. (1984), vol. 146, p p .  451-469 

Printed in Great Britain 
45 1 

High-Reynolds-number viscous flow 
in collapsible tubes 

By 0. R. TUTTY 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW 

(Received 26 August 1983 and in revised form 2 March 1984) 

This study is concerned with steady laminar high-Reynolds-number flow in collapsible 
tubes, where the position of the tube wall is a function (the tube law) only of the 
pressure exerted by the fluid on the wall. The system is controlled by two main 
parameters: the Reynolds number of the incoming flow, and the ‘compliance ’, which 
characterizes the response of the wall to a change in fluid pressure. Restrictions are 
placed on these parameters so that the streamwise lengthscale is large, and, to the 
order worked, the pressure is uniform across the tube. Attention is restricted to 
(axi)symmetric systems. 

Channels are considered in most detail, the results for axisymmetric pipes being 
largely similar. 

For a model tube law the flow in the converging section of a channel is investigated 
in detail. Solutions are presented for certain of the parameter values. For some 
channels a singularity is found in the solution such that the channel width tends to 
zero a t  a finite distance downstream. No way was found to integrate past this 
singularity. 

For particular channels and pipes, solutions are found only for flows in which the 
mean fluid velocity is less than the propagation speed of frictionless waves. This is 
consistent with experimental results. 

1. Introduction 
It is thought that fluid-dynamical properties, particularly the Iocal shear stress, 

can have important physiological implications for the flow in the blood vessels of 
animals (see e.g. Caro, Fitz-Gerald & Schroter 1969, 1971; Lighthill 1972), and 
recently attention has been given to flow in non-uniform tubes under a variety of 
conditions (e.g. Jaffrin & Shapiro 1971; Wild, Pedley & Riley 1977; Shapiro 1977a; 
Secomb 1978 ; Pedley 1980). We are interested in the behaviour of collapsible fluid-tube 
systems, which could be regarded as idealized models of physiological systems, such 
as the flow in veins, the urethra, and the pulmonary airways (for a more detailed list 
see Shapiro 1977b). 

We consider steady high-Reynolds-number flow in an infinitely long collapsible 
tube where the position of the wall is known as a function of the pressure exerted 
by the fluid on the wall alone. We assume that far upstream the tube has a constant 
cross-sectional area and shape, and that there is a known reference pressure above 
which the tube takes this rigid shape and below which the position of the wall can 
vary. Also, we assume that the ‘tube law’, the relationship between the position of 
the wall or the cross-sectional area and the internal pressure, is a continuous function. 
Hence the position of the wall will be continuous everywhere the fluid pressure at 
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FIGURE 1. The geometry and coordinates for a collapsible channel. 

the wall is continuous. The reasons for and validity of using a tube law are discussed 
briefly below. 

We are concerned only with (axi)symmetric-tube fluid systems in this study (some 
aspects of non-symmetric systems will be considered in a later study), and consider 
only converging tubes. In  general the results for analogous symmetric channels and 
axisymmetric pipes are similar, and usually we consider the channel problem. The 
significant differences between pipe and channel flows are discussed in 8 6 below. 

Equations for a collapsible channel 

The fluid is incompressible with steady laminar motion. Let p be the fluid density, 
a be the half-width of a channel when in its rigid upstream form, and U* be a 
characteristic velocity far upstream. The channel problem is two-dimensional, and 
we write the pressure as p V 2 p  and the velocity as U*(u,  v)  in Cartesian coordinates 
(x, y) ,  where ax and ay are the distances downstream and across the channel 
respectively The origin is taken as the centre of the channel a t  the point where the 
walls first deviate from the rigid upstream form (see figure 1). The reference pressure 
a t  which the collapse starts is taken to be zero. 

The properties of the two channel walls are taken to be identical. Hence the flow 
is in general expected to be symmetric. I n  the problems studied below, the pressure 
is independent of y. Thus the position of the walls is given by y = fy,, where 
yw = y,(p) is the given tube law. The boundary conditions are those of no slip on 
the walls and matching to fully developed Poiseuille flow upstream : 

u = v = 0 at yw = fy,(p), 

u + U o ( y )  and v+O as X + C O ,  

where Uo(y) = +( 1 -y2).  If the flow is symmetric then no slip a t  one of the walls can 
be replaced by a symmetry condition a t  y = 0. In practice, since no upstream 
influence is found, the upstream condition can be applied a t  x = 0. 

We use a tube law of the form 

= 1 -eSfmL ( 1  2) 

where ,LA > 0 and 0 < c < 1 are non-dimensional constants, and S(t)  is a continuous 
monotonic function such that S( t )  = 0 when t 3 0, s(t) > 0 when t < 0, 8 ( t )  is O(1) 
when - - t  is O( l ) ,  and 8(t) + 1 as t+ - CO. Thus the rigidity of the wall whenever the 
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pressure is positive is assured. The form of the tube law is discussed below. If c: = 1 
we say that the tube undergoes a complete collapse, and if 0 < 1 - c :  4 1 a severe 
collapse. 

Our interest is in high-Reynolds-number flow, and we assume 

R e  = U*a/v + 1 (1.3) 

throughout, where v is the kinematic viscosity of the fluid. In  addition to (1.3), 
restrictions will be placed on E and p so that, to the order considered, the transverse 
momentum equation implies that the pressure is independent of y. 

So far we have not considered the lengthscales to be used. For flow in a tube with 
a fixed constriction, the lengthscales are obtained from the known dimensions of the 
constriction (see e.g. Smith 1976a, 6 ,  1978, 1979). We have, in a sense, the opposite 
situation; that is, i t  is the pressure distribution that determines the position of the 
walls, and i t  could be said that our major task is to follow the development of the 
pressure from its value in the incoming Poiseuille flow. Accordingly, we assume that 
sufficiently far upstream the pressure gradient is O(Rec l )  and use this to  find initial 
lengthscales for any given situation. This gives large ( O ( R e / p ) )  axial lengthscales for 
all the problems considered here. In  particular, if p = O(1), the governing equations 
are au av 

ax a y  -+- = 0,  

au au d p ( x )  a Z u  

ax a y  d X  ay2 +--, u-+ v- = -___ 

the nonlinear boundary-layer equations, where X = Re-l x: and V = R e v .  

The tube law 

In  common with a number of other studies of flow in collapsible tubes (e.g. Wild et 
al. 1977; Shapiro 1977a; Kamm & Shapiro 1979), we use an algebraic form of the 
tube law when i t  is explicitly required. Various theoretical laws of this form have been 
proposed, both for distended elastic tubes with a circular cross-section (e.g. Taylor 
& Gerrard 1977) and for buckled tubes with negative transmural pressure (e.g. 
Flaherty, Keller & Rubinow 1972). Strictly, these relationships apply to tubes filled 
with a stationary fluid that are distended by a uniform transmural pressure. If the 
fluid is viscous and in motion, the pressure a t  the wall is unlikely to be uniform, and 
there will be a shearing force on the inner wall. Further, in any rigorous analysis the 
effects of the bending stiffness of the wall and the conditions a t  the outer surface of 
the wall must be considered. Hence i t  may be necessary to  place severe restrictions 
on the fluid-tube system to justify this assumption. I n  particular, the effect of the 
longitudinal tension in the tube wall must be negligible, and we must have a long 
axial lengthscale (see Tutty 1982; Cowley 1982). I n  all the cases considered here the 
latter of these conditions is satisfied. Note that, even if the use of a tube law is valid, 
the correct law may not be that obtained from a uniformly distended elastic tube 
(Cowley 1982). 

Where the tube law is required explicitly, we use 

where p and q are positive non-dimensional constants. This relationship has a similar 
general form to those derived for certain elastic tubes (Taylor & Gerrard 1977; 
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Flaherty et al. 1972), and those used in other studies of flow in collapsible tubes (e.g. 
Shapiro 1977a). Writing p = , i ipW2,  we see that there are three parameters, ,ii, q and 
E ,  that  characterize the elastic response of the tube to changes in the pressure p l P 2 p ,  
and that, unlike q and E ,  ,u is a composite parameter with its value depending on both 
the incoming flow and the elastic properties of the tube. An important feature of (1.5) 
is that dSldp = 0 a t  p = 0. This ensures a smooth transition between the ‘rigid’ and 
‘collapsible’ sections of the tube (p > 0 a n d p  < 0 respectively), which eliminates any 
‘entrance effects’ which might arise from a discontinuous change in the slope of the 
walls where p = 0. Also, such a discontinuous change could invalidate the use of a 
tube law. Since for a given tube (values of q and E )  the rate of change of cross-sectional 
area with respect to the pressure is determined by p, we call a tube-fluid system with 
p % 1 ,  ,u = 0(1) or p < 1 a system with a high, moderate or low compliance 
respectively. Note that if (,up)2 in (1.5) is replaced by (,up)m, where m > 1,  then an 
analysis similar to that below could be carried out, with essentially the same results. 

Contents 

This paper is concerned with symmetric channels and axisymmetric pipes with a low 
or moderate compliance (complementary papers dealing with channels with a high 
compliance and non-symmetric pipes are in preparation). We consider ‘ substantial ’ 
collapses only (i.e. those with E = O(1)) .  Tutty (1982) gives solutions for ‘fine’ 
collapses ( E  < 1) .  Section 2 describes the general structure of the flow, with channels 
obeying (1.5) with q d $, < q < i, q = $ and q > $ studied in detail in $ 9 3 4  
respectively. The flow is Poiseuille-like if q < $. A singularity is found such that the 
channel collapses completely at a finite distance downstream if + < q < i. The flow 
structure derived does not appear to break down as the singularity is reached ( $ 5 ) .  
We found no solution for q > $ ($6)  or for p 2 18 with q = $ ( $ 5 )  when the collapse 
was complete. Channels with low compliance are considered in $7.  Section 8 deals 
with axisymmetric pipes. Again, solutions are found only for tube laws where the 
cross-sectional area A varies as (-p)-” with m < $. Also a limit of p < 128 applies 
to the solution found for m = $. Our results are compared with experimental results 
in $9, where the limits on our solutions are found to be consistent with experimentally 
observed phenomena. Some remarks concerning the results are made in $ 10. 

The nonlinear problem defined by ( 1 . 1  )-( 1.5) must be solved numerically. We used 
the ‘Keller-box’ method, as detailed by Smith (1974) for the interactive boundary- 
layer equations. I n  particular, the (non-asymptotic) solutions presented in figures 3, 
4 and 8 were obtained in this way. Some of our solutions were checked using a 
‘ stream-function-vorticity ’ formulation centred on the half-step in x with a Gauss- 
Seidel iteration. Good agreement was found between the two methods. 

Throughout this paper the stream function is defined in the standard way. 

2. General structure of the flow 
Consider a complete collapse ( E  = 1) with a moderate compliance (p = O( 1)) .  Close 

to the origin (0 < X < 1 ; -,up < l ) ,  the flow is given to leading order by Poiseuille 
flow with a perturbation to  the stream function O(Xz) .  This perturbation has an 
inviscid rotational form in the core (region 11, figure 2), with viscous layers of width 
O ( X i )  a t  the walls (region I, figure 2). The powers of X are forced by the form of 
the tube law, the no-slip condition and the (necessary) balance of viscous and inertial 
forces in the wall layers. We omit the details (which can be found in Tutty 1982). 
Clearly there is a fairly smooth change in the flow and the wall position near the origin. 
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FIQURE 2. Flow regions. 

The flow structure outlined above is valid only for 1 - yw 4 1 ,  and not when 
X = 0(1), or more precisely when -,up = 0(1), and the walls have moved a finite 
distance into the channel (region 111, figure 2 ) .  When this occurs, u- U,(y) is also 0(1), 
and the flow is governed by the nonlinear boundary-layer equations ( 1 . 4 ) .  Numerical 
methods must be used to find the flow in this region. 

Further downstream, where -,up 9 1 (regions IV  and V, figure 2 ) ,  the tube law 
(1.5) implies 

to leading order, where k = pU-4 is O ( 1 ) .  As mass conservation requires that the 
average streamwise velocity is O(y;l) ,  the ratio of pressure gradient to  inertial forces 
is O(y;-l/q). Hence as p +  - 00 and yw+O the pressure gradient will dominate the 
inertia if q < + and the inertia the pressure force if q > $, If q = athere will be a balance 
between these forces as the channel collapses. For q < + there must eventually be a 
balance between the pressure gradient and the viscous forces (which are O(yG3)) in 
the fluid. This implies a lubrication solution, and, with an appropriate change of origin, 
that  X = O(y:-l/'J) as yw+O. It follows that for q < + the collapse will extend 
indefinitely far downstream, while, for f < q < +, yw will tend to zero a t  a finite value 
(X,) of X. For q = + it is found that the channel collapses exponentially, i.e. at the 
fastest rate consistent with a collapse extending to infinity. 

(2 .1 )  Yw = k( -P l rq  

3. Channels with q 4 + 
First suppose that q < $, e = 1 and ,u = O ( 1 ) .  As p +  --oo viscous diffusion 

dominates the inertia, and the flow is given to leading order by the self-similar 
structure 

u = G ( X ) f ( S ) ,  ( 3 . l a )  

p = -poG1/Q,  (3.1 b )  

where G ( X )  = Xqlm, 5 = yG, m = 1 - 3q > 0 ,  p ,  is a constant, and an implicit origin 
shift (which must be determined numerically) has been included. The solution is easily 
found to be Poiseuille flow : 

( 3 . 2 )  Po f(5) = g ( G - S ) >  

where p ,  = (m/k3)lIm and cw = kp;q gives the position of the upper wall. The skin 
friction is $-4  

= - 0 Xzqlm. 

As is usual with self-similar solutions, we have not used any initial conditions. Note 
that, although (3 .2 )  is consistent with the incoming Poiseuille flow, lubrication theory 
does not apply everywhere, and there is a region (111, figure 2) where inertia is 
important at leading order. 

m 
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The powers of X in (3.1) depend only on the value ofq, and as might be expected 
an increase in q brings (with respect to X) an increase in the order of the pressure, 
velocity and skin friction, and a decrease in the negative order of the channel width. 
As q + i ,  q/m+ a, which suggests formally an exponential structure when q = +. 
Examination of the numerical solution of (1.4) and (1.1) showed that the effect of 
increasing q and y was to steepen the main part of the collapse and shift i t  closer 
to the origin, with the opposite effect from decreasing q and y .  This is consistent with 
the predicted faster response of the system with larger values of q and/or p. 

With q < 5 the complete collapse admitted by e = 1 will be achieved only in the 
limit as X+ 00, and the analysis above is valid far downstream. 

Let us assume now that the collapse is severe but not complete, i.e. 0 < 1 -e + 1 .  
Then (3.1) is valid until yw is O(1 -e), when the problem must be rescaled. Let 

- _  
u = ( l - e ) - l c ( X ,  Y )  and p = ( l -e)- l /*p(Z),  

where 

y =  (1-e)  r and x = R e ( l - e ) p m ' Q x .  

To leading order the upper wall is given by Fw = 1 + ek( -$*. The flow is still viscous 
here, the boundary conditions are no slip a t  the wall and a mass-conservation 
condition, and the solution for f i  has the lubrication form ( 3 . l a )  and (3.2) with 
G ( X )  = Y;3, p ,  = m = 1 and g = r. The pressure can be found from p' = - TG3, where 
in practice the starting point for the integration must be found numerically. We note 
that a similar pressure relationship holds upstream where (3.1) is valid. It is easily 
shown that this solution matches with (3.1) and (3.2) upstream, and that it takes the 
expected form far downstream, i.e. Poiseuille flow in the limit as x+ 00 and < + 1 .  
For -p 9 1 it can be expanded in negative powers of 1 9  1 .  We omit the details. 

Suppose now that q = + and e = 1. If -pp 9 1 then to leading order the tube law 
is given by (3.1), and the necessary balance between the viscous force and the pressure 
gradient in the fluid implies that  X = O(lny,) as yw+O. Thus the collapse has an 
exponential form, as predicted. The flow, which is viscous in character, is given by 
(3.1) and (3.2) with G ( X )  = eax,  p ,  = 1 ,  m = k3 ,  g = yeaX and a = 1/(3k3). The walls 
are given by 5 = +cw = k k ,  and an implicit origin shift has been included. Again 
(cf. q < i) a larger p results in a faster collapse and a smaller p a slower collapse. For 
a severe collapse the analysis proceeds as for q < + above. 

Figure 3 shows results for various q with e = y = 1 .  The asymptotic solution given 
for -,up 9 1 are not shown as they are graphically indistinguishable from the 
numerical solution in the region where they are valid. However, we note that for q = + 
the pressure and skin-friction curves take the predicted form, i.e. straight lines on 
a logarithmic scale except near the origin. 

4. Channels with $ < q < $ 
Consider now a complete collapse (e = l ) ,  a moderate compliance (y = O ( 1 ) )  and + < q < $. We know from $2  that where the tube law takes the form (2.1) (regions 

IV and V figure 2), the pressure gradient will dominate the inertial forces in the fluid 
as p+ - 00, and that the width of the channel tends to zero a t  a finite valuc X ,  of 
X .  That is, as yw+O the flow is viscous-dominated and acts as if there is a sink a t  
X = X,. For 0 < X,-X @ 1 the flow has a self-similar structure, viz (3.1) and (3.2) 
with G(X) = (X,- X)-*irn, 5 = yG, m = 3q- 1 > 0, p ,  = (m/k3)-'/", and the tube law 
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F I w w  3 .  (i) Pressure p (on a logarithmic scde) .  (i i)  Upper-wall skin friction 7 (on a logarithmic 
scale). ( i i i )  Channel half-width yw. Results against distancc for a channel with t = ,u = 1 .  ‘I’hc 
asymptotic solutions are graphically identical (where valid). ( a )  r/ = 0.1 : (6) 0.2:  (c) 5 ;  ( d )  0.4, ( P )  +. 
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A 

FIQURE 4. Half-width yw against distance for a channel with Q = 0.4, ,u = 1 and E = 0.99. From (a) 
numerical solution of the full problem ( l . l ) ,  (1.2), (1.4) and (1.5); ( b )  self-similar solution valid when 
yw - k( -p)-O ; (c) far-downstream analysis with Fw - 1 + ek1-O 4. 

has the local form 5 = &, = kp;q. To leading order, yw = <w(X,-X)q/m, and since 
q < the slope of the walls tends to zero as X+ X,, - . 

The pressure gradient is p' = -yL3, with yw from (2.1). Integrating 

1 
X-Xl = *"-Pl)-"-(-P)-ml, 

where X > X, and p, = p ( X , ) .  It follows that 

( - P J m  
rn,u3/4 

x, = x,+ 

Rubinow & Keller (1972) assumed that Poiseuille flow is valid locally and produced 
a simple model of steady flow in a collapsible tube. Their model predicts that  as the 
outlet transmural pressure tends to  infinity the mass flow tends to an upper limit, 
a result which depends on the existence of a certain integral. For our problem this 
integral is 

0 Pl 

Yi3(P) dP = s_, Yi3(P) dP+ Ĵ o Y,"P) dP I, P l  

which exists if q > 3. In  effect, Rubinow & Keller assume that a complete collapse 
to a given point (the outlet) is possible and calculate the mass flow consistent with 
this collapse. For our problem, this is equivalent to assuming that q < and that X,, 
X, and p, are known, and hence calculating p from (4.1). In  contrast, we assume a 
particular mass flow in a given tube, i.e. values of p and q, and calculate the point 
X, a t  which the channel collapses completely. 

As before, an increase in q or ,u steepens the main part of the collapse and moves 
it upstream. 

The numerical solution of the problem with E = 1 clearly displays the predicted 
singularity in the solution, as can be seen in figure 3. 

The boundary-layer approximation does not appear to break down for any 
Xo-X > 0,  and the flow structure given above remains valid until the limit is 
reached. Clearly, this is not physically reasonable (see $5  for discussion). 

If the collapse is severe rather than complete then the analysis continues as for 
q < 3 ($3) .  Figure 4 shows the channel half-width against X (obtained numerically 



High-Reynolds-number viscous flow in collapsible tubes 459 

FIGURE 5. F ( g ) :  (i) has go = 0, a = 2/3 and b = - 4 3 ;  (ii) has go = a = 1 and b = - 2 ;  and (iii) has 
go = i, a = t(6 2/2- I )  and b = t(6 2 / 2 +  1). All curves with 0 < go < 1 lie between (i) and (ii), and 
unless 0 < go G 1 either V ( 0 )  > 0 or V(g)  < 0 for all g > 0. 

from ( l . l ) ,  (1.2), (1.4) and (1.5)) withe = 0.99, ,u = 1 andq = 0.4. Also shown are the 
theoretical results for the main part of the collapse, and for far downstream where 
Fw = 1 +ekX-q+O(X'-'q). 

5. Channels with q = 4 
We now study the channel with q = 4, ,u = O(1) and e = 1. This is the largest value 

of q for which a complete steady solution has been found when p = O( 1 )  (see $6).  Also, 
with q = 4 there is an upper limit of ,u < 18 for which a steady solution of the form 
assumed exists (see below). 

With q = ?j the inertial force and pressure gradient in the fluid are of the same order 
of magnitude when the tube law is given by (2.1) ($2). Assuming a balance with the 
viscous force implies that  yw is O(X, - X) for some finite X, as X+ X, - . Transforming 
the stream function and pressure to 

where 5 = (213,); y(X, - X)-l, the streamwise momentum equation becomes 

g"+ 1-92 = 0,  ( 5 . 2 )  

5, = k ( 2 h o ) f .  (5.3) 

where g = f gives the streamwise velocity component in the similarity solution. The 
tube law has the local form 

Conservation of mass and no slip at the walls require 

5, 
g ( 6 )  d5 = $(2p,)-f ,  g = 0 a t  5 = L-5, (5.4) 

J-5, 

in turn. 
Equation (5.2) is similar to that for Jeffery-Hamel flow between non-parallel plane 

walls (Rosenhead 1940). Jeffery-Hamel flows are not in general unique. I n  fact, there 
is an infinite number of solutions, although the number that are valid can be restricted 
severely under certain conditions (Fraenkel 1962). There is also an infinite number 
of solutions to  the present equation, as will now be shown. 
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Integrating (5.2) produces 
$ ’ Z  + F ( g )  = 0, (5.5a) 

whcrc F ( g )  = -390-9) ( a - g )  ( g - h ) ,  (5 5 h )  

and go, a = f[ -go + (12 - 3gE)i] and h = -$[go + (12 - 3g;)i] are the solutions of g’ = 0. 
If a ,  b and go are all real let b < go < a ,  otherwise let h be the single real solution of 

We require F(g)  to be zero a t  5 = -kCw and F ( g )  < 0 in -6 < < < 6. From 
inspection of the graph of F ( g )  (figure 5), we see that the maximum possible value 
of g is unity, that g + a unless go = a = 1, and that therc are two basic solutions, a 
completely forward flow with 0 < g < go, and wmpletely reversed flow with 
b < g < 0, which can exist if b < - d3. Clearly the completcly reversed flow cannot 
satisfy mass conservation However, if 0 < go < 1 there arc composite flows with 
g,,, = go and gmln = b, which satisfy continuity and have regions of both forward 
and reversed flow, and our problem does not have a unique solution (see below). 

First, we examine the completely forward flow in which the velocity is symmetric 
and is monotonic in the upper and lower halves of the channel. We replace no slip 
at the lower wall with g’(0) = 0, which is automatically satisfied as g(0) = go in ( 5 . 5 ) .  
I n  the upper half of the channel g’ is negative, and (5.5) and the no-slip condition 
imply that 

g’ = 0. 

dt 
5 w - 5  = J Jog [(go--) ( t - b ) l t ’  (5.6) 

dt At 5 = 0 this gives 

which with the condition from conservation of mass, viz 

(5.7) 

determines the values of go and p, for a given value of the known parameter k ( =,d). 
In  practice i t  proves easier to take a particular value of go and determine the values 
of k andp, consistent with this go. We note that (5.7) and (5.8) can be written in terms 
of elliptic integrals. 

The solution for 1 -go 4 1 

Some important details of the local behaviour of the flow can be deduced from the 
solution when go is close to  unity, which we now examine in detail. It can be shown 
that Cw - - ( 1 / ~ 2 ) l n ( 1 - g o ) + ~  and k + k ,  as g o + l - ,  where k ,  = 1/(32/2).  
The bchaviour of g,  and of the constants go, p ,  and cw, as k+ k,  can be deduced directly 
from the momentum equation and conservation of mass. Equation (5.2), the 
monotonicity of g in 0 < < < Cw, and l& + 1 ,  imply that to leading order 

g = l  (5.9) 

in the core where q = Cw - < + 1 (V,  figure 2) .  Further, the next term in the expansion 
for g in the core must be exponentially small in CW, as must 1 -go. If for 7 = 0 ( 1 ) ,  
i.e close to the wall ( IV,  figure 2 ) ,  we write g(<) as g(q), then Q(q) must satisfy ( 5 . 2 ) ,  
O(0) = 0 (no slip at the wall) and &+l as ~ + C O  (matching to the core flow). This 
Falkner-Skan problem is the same as that arising in the flow in a converging channel 
with intersecting plane walls. The solution is 

i(q) = 3 tanh2 (7, + q / d 2 )  -2 ,  (5.10) 

where 7, = t anh- ld ;  = 1.146216. 
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5, 

go'.ol 0.5 1 
FIauRE 6. Coefficients of the asymptotic solution for -,up 9 1 with E = 1 and q = $. (i) p against 
6: (a )  from (5.7) and (5.8); (b) from the first two terms of (5.12). (ii) go against p (from (5.7) and 
(5.8)). 

Conservation of mass and (5.9) imply that 

3 2 / 2  k - ( l62pO):  (5.11) 

and that = (162p0)@ to leading order. 
This suggests bhat for large we expand p ,  and k as 

i k = ko+kl<&'+ ...., 

P ,  = &L'&4+~01C&5+.. . .  
(5.12) 

Equation (5.11) and the wall relationship = k(2/p0):,  which must hold exactly, can 
be used to determine the k, and pot in (5.12).  I n  particular, we find k, = 1/(32/2) (as 
above), k, = 1 - 2/$,  and p,, = 4( 1 - . \/$)/(272/2). We have assumed here that 
higher-order terms in the boundary-layer expansion are insignificant to the order 
calculated in (5.12). It is easily shown that if Q is expanded in terms of 6' then the 
leading-order term is given by (5.10) and that the values of k,, k, and pol are as given. 
Hence there is no serious omission to the results presented. 

The tube law implies that yw = k p ; ~ ( & - X )  locally, and hence that the slope of 
the channel walls will become infinite as p + 18 and p ,  +O.  

Figure 6 displays the values of go and against p as calculated from (5.7) and 
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FIGVRE 7 .  Velocity profiles for q = +, c = 1 and various ,u (from (5.6)) where gs = g/go 
and = {/{,,,. (a) ,u = 0.1; (b) 4.0; (c) 10.0; ( d )  15.0; (e) 17.0. 

(5.8), and the theoretical values of ,u obtained from the first two terms for k in (5.12). 
Agreement is excellent in the region for which 1 -go is small, i.e. for ,u < 13 
approximately. The shape of the velocity profile for various ,u (from 5.6) is shown 
in figure 7 .  Clearly g(<) takes the predicted mainly inviscid form as ,u + 18 - . Also, 
the velocity is close to parabolic for ,u 6 1 approximately, a result easily recovered 
by expanding for small go. 

Figure 8 shows results for the full problem (1.1)-( 1.5) for various ,u with e = 1 and 
q = $. A detailed comparison showed excellent agreement between these values (when 
they could be obtained), and the solution of the local problem (5.1)-(5.4), and it is 
clear that this self-similar solution provides a valid local description of the flow for 
,u = O(1). As expected, X, decreases as ,u increases. The numerical solution of 
(1.1)-(1.5) failed for ,u greater than about 13, a value consistent with 1 - g o  6 1 (see 
figure 6) and the solution approaching the limit form. 

Breakdown of the solution as ,u+ 18 

We have found a numerical solution of (5.2)-(5.4) valid for ,u < 18 and a limit solution 
valid as ,u+ 18. Since go 6 1 i t  follows from (5.7) and (5.8) that k(2/p0)i > $(2p0)i, 
which implies that ,u < 18. Hence the completely forward flow cannot provide a 
solution of (5.2)-(5.4) for ,u > 18 (nor can any of the other flows - see below). Also, 
(5.12) implies that the limit solution is valid only as ,u+ 18 from below if 5, > 0. An 
unsuccessful attempt was made to find an alternative limit structure (Tutty 1982; 
Appendix 1). 

The self-similar form (5.1) arises naturally from mass conservation and a balance 
of the viscous and inertial forces. We could assume instead that the inertia 
dominates the viscous diffusion as yw + O ,  so that the flow is governed by the classical 
boundary-layer equations (1.4) without the diffusion term. However, i t  is easily 
shown that as p +  - 00 the solution (Cole & Aroesty 1968) is valid only for ,u = 18, 
and that the leading-order term is, not surprisingly, the inviscid core flow of the limit 
solution given above. 

The validity of the solution for ,u < 18, and the consistency between the numerical 
and analytical results (both in their failure and agreement) suggests that  no steady 
solution exists for the problem as formulated. It is possible that the difficulties may 
be resolved by using a shorter axial lengthscale, or by upstream influence. Tutty 
(1 982) considered these, with respect to the problem with ,u + 1 ,  and they did not 
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FIQURE 8. (i) Pressure p (on a logarithmic scale). (ii) Upper-wall skin friction 7 (on a logarithmic 
scale). (iii) Channel half-width yw. Results against distance for a channel with E = 1, q = g .  The 
asymptotic solutions are graphically identical (where valid). (n) p = 0.1; ( b )  0.4; ( e )  1.0: ( d )  3.0; 
( e )  10.0. 
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appear to provide a reasonable explanation of the failure of the solution, or a 
satisfactory flow structure. Alternatively, i t  may be that the channel-fluid system 
is inherently unstable and unsteady effects must be included. Some experimental and 
theoretical evidence supports the latter conjecture (see 6 9). 

#elf-similar solutions with reversed $ow 
Following the above, we can construct solutions of (5.2) which satisfy no slip and 
have an arbitrary number of regions of reversed flow, including possibly regions of 
reversed flow adjacent to the walls (for details see Tutty 1982). Such solutions have 
a limit form of g = 1 over most of the channel, with the appropriate reversed jets. 
Mass conservation is satisfied by this limit form, and there is a range of go < 1 for which 
any such solution can satisfy (5.4). For any particular solution requiring 0 < Cw < co 
implies that  ,u < 18. Hence if p > 18 there is no local solution with the self-similar 
form (5.1). We note that, in common with our problem, a solution of the Jeffery-Hamel 
problem does not exist for all values of the parameters (Rosenhead 1940). 

No concavities or reversals were found in any numerical solutions of (1.1)-(1.5). 
This, and the excellent agreement between the solutions of (5.1)-(5.4) and (1.1)-(1.5), 
strongly suggests that, when i t  exists, the correct local solution is the completely 
forward flow. 

The structure as X --f X o  
With q < t the inertial terms from the boundary-layer approximation, the minor 
terms from the expansion of the tube law, and the lower-order terms from the 
Navier-Stokes equations are ignored in the analysis for -,up % 1.  However, none of 
these appear to force a breakdown of the approximation as X + X o .  Indeed, the 
condition for such a breakdown seems to be p > +. With q = + only two of these 
factors are omitted, the boundary-layer equations (1.4) being satisfied exactly. To 
simplify matters further, consider the problem in which the tube law is given exactly 
by (2.1) downstream of some point where p = 9 < 0. Then, for - p  9 1, the stream 
function and the pressure have the form (5.1), wheref(5) and p,([) are power series 
in Rep2. To leading order f and p ,  are those given above. The lower-order terms give 
rise to systems of third-order ordinary differential equations with straightforward 
boundary conditions. I n  general, forcing terms ensure non-trivial solutions of these 
problems. 

Although, as yet, solutions have not been computed for these lower-order problems, 
it seems that there will be little difficulty in doing so, and hence that there will be 
no breakdown in the flow structure as X + X o - ,  at least for this model problem. 

6.  Channels with q > $ 
Suppose that q > +, e = 1 and ,u = O ( 1 ) .  As yw+O the inertial force in the fluid 

dominates the pressure gradient, and the local problem does not appear to be well 
posed in the sense that the wall position (and therefore the boundary conditions) 
depend on the pressure but the pressure does not appear in the governing equations 
at leading order. If a balance between the viscous and inertial forces is assumed then 
yw is O ( X , - X ) ,  and it can be shown (cf. p = +) that  there is no self-similar solution 
for the local problem that can satisfy both no slip at the walls and mass conservation. 

Alternatively, if inertia dominates, the flow must be non-symmetric unless there 
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is a concavity in the flow field a t  y = 0, and unless the transverse velocity is 
unidirectional there must be reversed flow over part of the channel. Although 
concavities have been reported for flows through constricted tubes (Smith 1979; 
Despande, Giddens & Mabon 1976; Forrester & Young 1970), there was no evidence 
in the numerical solutions (as far as they could be obtained) for any concavity here. 
We could not find a solution for any self-similar flow with p o= ( X ,  - X ) - n  and nq < 1 ,  
a form that might be expected from the results for q < +. 

The numerical procedure applied to the full problem (1.1 )-( 1.5) diverged when the 
walls moved a finite distance into the channel. Hence no complete numerical or 
analytical solution was found for the problem with q 2 $. This is true also for the 
problems with p 4 1 ($7)  and ,u 9 1 (Tutty 1982). 

7. Channels with a low compliance 
Suppose that ,u 4 1. The tube law suggests the scaling p = p-lp, and in turn 

x = ,u-I R e x .  The flow is viscous, the pressure independent of y to leading order, and 
the solution has the lubrication form ( 3 . 1 ~ )  and (3.2) with G ( X )  = y;:, 5 = y and 
p ,  = m = 1, with P determined by = - G. Clearly, if yw --f 1 - E > 0 as P+ - a3 this 
solution takes the expected Poiseuille form in the far-downstream limit. 

Suppose now that E = 1.  There is a singularity a t  a finite value xo of for q > $, 
with an asymptotic structure for -P  % 1 similar to that given above. If q < $ the 
flow remains viscous in nature throughout the collapse, and if $ -= q 6 f the 
asymptotic structure appears to be valid until the singularity is reached, as for 
p = O(1). If q > f then the viscous and inertial forces and the pressure gradient are 
all of the same order a distance O(p(3q-1)’(2q-1)) from the singularity. I n  this region, 
the governing equations are the nonlinear boundary-layer equations (1.4), and the 
boundary conditions are no slip a t  the walls and matching to the incoming flow, It 
follows from the results of $6  that we do not have an asymptotic solution for this 
local problem as yw+O, nor a numerical solution for yw 4 1. Thus, for a channel 
obeying (1.5), we do not have a complete solution for any value of p < O( 1) if q > f. 
This is true also for ,u % 1 (Tutty 1982). 

8. Axisymmetric pipe flow 
Consider a circular pipe of radius a upstream from a compliant pipe. Non- 

dimensionalizing on the radius and matching to the incoming Poiseuille flow, as for 
the channel, gives a uniform pressure across the pipe and the axisymmetric 
boundary-layer equations as the governing equations. We take as tube law (1.2) and 
(1.5) with yw replaced by r,, where r = rw is the wall position and r is the non- 
dimensional radial coordinate. 

Suppose that ,u = O(1)  and c = 1 .  The analysis for -,up < O(1) is similar to that 
outlined in 92 for symmetric channels. When -,up % 1, rw = k( -p) -Q to  leading 
order, where k = ,LO. I t  follows that if q < + the flow is similar to that for a channel 
with q < 5 and -,up 9 1 .  i.e. viscous-dominated with a parabolic axial velocity profile 
and the collapse extending indefinitely far downstream. If q > 2 then the inertial force 
must dominate the pressure gradient as p+ - CO, as for a channel with q > $ ($7 ) .  
No solution was found for this local problem with q > i. 

If q = 2 the inertial forcc in the axial direction and the pressure gradient arc of the 
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same order when -,up B 1 ,  Balancing with the viscous force implies that  p + - co 
exponentially in X = Rep1 x as X+ 00, which suggests the self-similar form 

where $ ( X , r )  is the stream function [ = (4b): rebX and b is a constant to be 
determined. The axial momentum equation and (8.1) produce 

(8.2) 

where g =f/{ gives the axial velocity component. The tube law has the local form 

9' g"+-+ 1 -&s" = 0, 
5 

= k(4b)i, (8.3) 

where k = p-:. The boundary conditions are that g is regular in 5 < 5, and 

(8.4) 

from no slip a t  the wall and mass conservation respectively. 
Unfortunately (8 .2)  cannot be integrated directly, and an analysis similar to that 

for (5.2) is not possible. However, we can show that  a solution of (8.2)-(8.4) can exist 
only if p < 128, and that if a solution exists when 0 < 128 - p  < 1 then the flow must 
be essentially uniform across the pipe, the viscous effects being restricted to thin 
layers (cf. the channel with q = f and 0 < 18-,u < 1 ) .  

From (8 .2)  we see that any turning point a t  which g > 2/2 must be a minimum. 
Hence if g and 9' are continuous and g > 4 2  a t  any point, then either g is monotonic 
or g > 4 2  a t  all points. Thus 2/2 is the maximum g can take if no slip a t  the wall 
is to be satisfied and the solution is to be smooth. It follows that Jg Cg(5) d< < 6 / 2 / 2 ,  
and hence, from (8.4), that  mass conservation can be satisfied only if k > k, ,  where 
k,  = 128-:; that is, if ,u < 128. Further, if k - k ,  < 1 then 2 /2 -9  < 1 over most of 
the tube (0 < 5 < 5,). Thus as p+ 128- any solution of ( 8 . 2 )  and (8.3) must have 
an essentially inviscid uniform mainstream with a viscous boundary layer at the wall. 
Daniels & Eagles (1978) have studied (8.2) for pipes with fixed exponential walls. They 
found a number of solutions, including a limit solution with basically uniform flow, 
and solutions with regions of reversed flow, all of which would be expected from the 
above and the results of 55. 

We note that, unlike the analogous channel case, the solution remains formally 
valid as ,u- 128+0- (see Daniels & Eagles 1978). This difference, like the existence 
of the singularity for channels but not for pipes, occurs because with a pipe the 
velocity varies as the inverse of the radius squared, whereas for a channel the velocity 
varies as the inverse of the width. 

9. Comparison with experimental results 
In  experimental studies of flow in collapsible tubes ' self-excited oscillations ' are 

commonly observed. If the outlet of the tube is substantially collapsed and the flow 
rate Q is large enough, then the fluid-tube system can spontaneously become unstable 
and cannot be regarded as quasi-steady. Brower & Scholten (1975) report that 'for 
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a given tube, there seems to  be a critical flow, characteristic only of the collapsible 
tube, which determines when oscillations are initiated ’. Further, they propose that 
this instability occurs when the mean fluid velocity in the tube exceeds the ‘phase 
velocity’ (the speed of propagation of a small pressure disturbance along the elastic 
tube) or, more precisely, the low-frequency limit of the phase velocity. This proposed 
connection between the fluid and phase velocities and the stability of the system has 
also appeared in theoretical studies (Oates 1975; Shapiro 1 9 7 7 ~ ;  Kamm & Shapiro 
1979). 

In  our terms, Brower & Scholten’s proposals become 
(i) for a given tube there is a critical value o f p ,  pc say, such that the fluid-tube 

system will spontaneously become unstable for p 2 pc ; 
(ii) pc is the minimum value of p for which the mean fluid velocity can match the 

phase velocity at any stage of the collapse. 
In  most attempts to calculate the phase velocity of an elastic tube filled with a 

viscous fluid i t  is assumed that the phase velocity is large compared with the mean 
fluid velocity and hence that the Navier-Stokes equations can be linearized (see e.g. 
Womersley 1955). We found no studies on the main problem of interest here, that 
ofa  viscous flow with the fluid and phase velocities of the same order. For an inviscid 
fluid with uniform flow in an elastic tube obeying a tube law the phase velocity is 
given by 

c = ( A g y :  

where c is the phase velocity (relative to the fluid velocity) and A is the nondimensional 
cross-sectional area of the tube (Shapiro 1 9 7 7 ~ ) .  

For a steady inviscid uniform flow in an elastic tube with tube law A = A(p) the 
equations of motion reduce to 

Mass conservation requires Au = Q, where Q is a constant, Hence, if du/dx is non-zero, 

dA A3 
dp -&2’ 
_ -  (9.3) 

the solution of which is 

A(p) = (B-2$)-’, (9.4) 

where B = 1/A2(0) is a constant. Thus we see that an axially varying one-dimensional 
steady flow of an inviscid, incompressible fluid can exist in a collapsible tube with 
tube law A = A@) only if A(p) has the form (9.4), and that the fluid velocity must 
necessarily match the phase velocity of the system. 

Consider now the channel with e = 1 and S(pp) given by (1 3).  Then a s p  + - co the 
tube law will take the form (9.4) if q = + and p = 18. I n  this case we also have an 
essentially uniform inviscid flow (provided the Reynolds number is sufficiently large). 
With q = $, ii < c throughout the collapse if and only if p < 18, where ii is the mean 
fluid velocity and c is given by (9.1). Similarly, the flow is basically inviscid and the 
tube law matches (9.4) for a pipe with e = 1, q = a n d p  = 128, with ii < c throughout 
the collapse if and only if p < 128. 

Thus our results are consistent with (i) and (ii) above in that a complete steady 
solution was found for the cases with i i / c  < 1 throughout the collapse (q  < $ for the 
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channel, q < for the pipe), no complete solution was found for the cases such that 
U / c +  00 as p - t  - 00 ( q  > t for the channel, q > a for the pipe), and for cases in which 
the tube law takes the form (9.4) a solution was found only for p such that U / c  < 1 
throughout the collapse. 

10. Final remarks 
The analytical solutions presented above have a reasonably simple form, and 

showed a pleasing agreement with the numerical solutions. Perhaps the most 
interesting feature of the results is not the solutions as such, but where they failed. 
We have found a singularity in the solution for some channels such that the channel 
width tends to zero a t  a finite distance downstream. This singularity is unusual in that 
the boundary-layer equations seem to apply (except for q = $ with 18-p 4 1) and 
the flow structure does not break down as the singularity is approached, i.e. although 
physically impossible the solution is mathematically valid until the singularity is 
reached. This singularity may be admitted only because the tube law has a very simple 
form, and i t  may not occur with a more realistic model of wall elasticity. Also, i t  may 
be possible that an ‘elastic jump’ - a shock-like change in the system where the tube 
expands markedly on a relatively short lengthscale - could provide a continuation 
to the present solution. However, there are several reasons for doubting the latter. 
First, the ratio of streamwise to crosswise lengthscale is large and remains so as the 
singularity is approached ; Secondly, in all known elastic jumps the flow is supercritical 
(UIc  > 1) upstream and subcritical (UIc  < 1) downstream, and, in particular, this 
must be so in an ‘inviscid’ jump (Oates 1975; Cowley 1982). We seem to require a 
subcritical to subcritical jump if the flow is to remain steady. These points are most 
easily seen from the model problem presented at the end of $5. I n  particular, the ratio 
of streamwise to crosswise scaling is constant, and i i / c  is always less than one and 
tends to a constant as the singularity is approached. Of course, this argument is in 
no way rigorous. I n  particular, we do not have an expression for c that  is valid for 
viscous flows. 

We have found encouraging agreement between the experimental results of Brower 
& Scholten (1975) (and others: see Pedley 1980, chap. 6) and the limitation on our 
solution when the cross-sectional area behaves as (--p)-B. It is stressed that we have 
not proved that the system must be unsteady if U / c  > 1, nor that Brower & Scholten’s 
hypothesis (i and ii, $9) are valid. However the agreement does suggest that the 
addition of time dependence and a stability analysis of our solutions may be a 
profitable extension to the present theory. 

Finally, we note that models of flow in collapsible tubes have been formulated with 
Poiseuille flow assumed valid locally (e.g. Rubinow & Keller 1972; Wild et al. 1977), 
and that our study supports the use of these models in certain circumstances; in 
particular, when the system is (quasi-)symmetric, the cross-sectional area A behaves 
like (-p)-* withq d $, dA/dp d O( l) ,  and the incoming flow is high-Reynolds-number 
Poiseuille flow. 
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